

EXPLORATION OF NATURAL RESOURCES OF POTENTIAL CANDIDATES FOR NOVEL THERAPEUTIC AGENTS

Dr. Ulfa Nurullita, S.KM, M.Kes **Faculty of Public Health UNIVERSITAS MUHAMMADIYAH SEMARANG**

Pharmacotherapy has made rapid progress since the early 20th century.

Synthetic and semi-synthetic chemicals \rightarrow in modern medicines.

MAIN STAGES AND TRENDS IN THE DEVELOPMENT OF CHEMICAL TREATMENT

Early Period of Chemical Medicine Development (19th -Early 20th Century)

Discovery of Aspirin (1897)

Discovery of Sulfa (1930s)

Antibiotic Revolution (1930s -1950s)

- **Discovery of Penicilin (1928)**
- **Development of Other Antibiotic Classes: streptomycin, tetracyclines,** cephalosporins

MAIN STAGES AND TRENDS IN THE DEVELOPMENT OF CHEMICAL TREATMENT

The Era of Chemotherapy and **Cancer Treatment (1950s - 1970s)**

Chemotherapy Development

Hormones and Antihormones

Structure-Based Drug Improvement (1970s - 1990s)

- **Molecular Target-Based Medicine**
- **Anti-HIV Medicine Development**

5 MAIN STAGES AND TRENDS IN THE DEVELOPMENT OF CHEMIC. TREATMENT

The Era of Biotechnology and Antibody-Based Medicine (1990s - Present)

Monoklonal Antibodies (mAbs)

Biological Medicine

Personalized Medicine (2000s -Present)

Pharmacogenomics

Specific Target Inhibitors

6 MAIN STAGES AND TRENDS IN THE DEVELOPMENT OF CHEMIC. TREATMENT

Small Molecule and RNA Therapeutics Development (2010s - Present)

RNA and mRNA therapy

Small Molecule Inhibitors

- **Regenerative Medication and Gene Therapy (Present and** Future)
- **Gene Therapy**
- **Stem Cell Therapy**

CHALLENGE

Side effects

Toxicity

Despite many advances in chemical treatment, challenges such as antibiotic resistance, medicine side effects, and the cost of developing new medicines continue to be problems.

Allergic Reaction

Drug Resistance

Drug Interactions

Addictions and misapplication

Effects on the Immune System

Treatment Failure

Genetic Mutation

Risks to Pregnancy and Fetus

PROBLEMS

Natural ingredients, or substances derived from nature such as plants, animals, and minerals, have been used in therapeutic treatments for thousands of years.

Nowadays, the benefits of natural substances continue to be explored in modern medicine.

Currently, the potential of natural materials is often neglected compared to chemical materials.

ADVANTAGES AND DISADVANTAGES OF PHARMACOTHERAPY

ADVANTAGES	DISA
Effective and measurable	more obviou
Consistent dosage	Drug depen
Under the supervision of a	the body ma
doctor, so that monitoring side	or require h
effects is easier.	time

9

DVANTAGES

us side effects

dency

ay become resistant igher doses over

ADVANTAGES AND DISADVANTAGES OF PHYTOPHARMACOLOGIES

ADVANTAGES	
Lighter on the body	Lack of dos
Less risk of side effects	Natural ing chemical n effectivene
Natural remedies are often used in a	Some natu
holistic approach that considers the	effective a
overall balance of the body.	especially ⁻

DISADVANTAGES

sage standards

gredients can interact with nedicine and affect their ess or pose risks.

ural ingredients may not be as s chemical medicine, for serious medical conditions. The use of natural ingredients for disease prevention has long been part of health traditions in many cultures.

disease.

These natural ingredients can be included in the daily diet to help maintain health and prevent disease.

Some natural ingredients have antioxidant, anti-inflammatory and immune system supporting properties that can help prevent

SOME NATURAL INGREDIENTS AS PHYTOPHARMACOLOGIES

- Turmeric(Curcuma longa)
- Ginger (Zingiber officinale)
- Sambiloto

 (Andrographis paniculata)
- Curcuma
 (Curcuma
 xanthorrhiza)

- Honey
- Aloe Vera
- Soursop
 leaf(Annona
 muricata)
- Ginseng (Panax ginseng)

- 12
- Cinnamon(Cinnamomum verum)
- Bay leaf(Syzygium polyanthum)
- Rosella (Hibiscus sabdariffa)
- Red Sappanwood
 (Caesalpinia sappan L)

MAIN BENEFITS OF NATURAL INGREDIENTS IN TREATMENT THERAPY

- Source of Active Substances
- Antioxidant Effects
- Anti-inflammatory
- Antimicrobial and Antivirus

- Adaptogen
- Immunomodulator
- Neuroprotective
- Good for Digestive health

Reduction of Side
 Effects

•	Con	, ,	•	•	•	•	•	•	•						
	Мос	•	•	•	•	•									
			•	•	۰	•	•	•	•	•	•	•	•		
			•	•	٠	•	•	•	•	•	•	•	•		
			•	•	•	•	•	•	•	•	•	•	•		
				٥	٠	•	•	•	•	•	•	•	•		
							•	•	•	•	•	•	•	•	•

BENEFITS OF SAPPANWOOD EXTRACT IN PREVENTING OXIDATIVE STRESS, LIPID PEROXIDATION AND CELL DAMAGE

Study on SOD, MDA, Caspase 3 Levels, and Nasal Epithelial Damage in *Sprague Dawley* Rats Exposed to Formaldehyde Gas

Mechanism of Cell Proliferation by Formaldehyde

Mechanism of Action of Secang Wood Extract and Vitamin C in Preventing Fat Peroxidation and Cell Proliferation

Inhibition Point of Cell Proliferation By Brazilin and Vit C

Formaldehyde Levels

)														
7.62	5													
					٠	•	•	•	•	•	•	•	•	•
			۰	٠	٠	•	•	•	•	•	•	•	•	
			 •	٠	٠	•	•	•	•	•	•	•	•	
			 •	•	•	•	•	•	•	•	•	•	•	
		0		٠	•	•	•	•	•	•	•	•	•	•
egati	ve	Normal		٠	•	•	•	•	•	•	•	•	•	•

.

SOD and **MDA** Levels

Caspase Levels and Nasal Epitelial damage score

Red arrow: epithelial degeneration Blue arrow: squamous metaplasia

Ν

Hyperplasia

Necrosis and Hemorrhage

450																
50								٠	٠	•	•	٠	•	•	•	•
				•	•	•	•	•	•	•	•	•				
•		٥	۰	•	•	•	•	•	•	•	•	•				
		٠	٠	•	•	•	•	•	•	•	•	•				
		•	•	•	•	•	•	•	•	•	•					
		٠	٠	•	•	•	•	•	•	•						
		•	•	•	•	•	•	•	•		•					
			٠	•	•	•	•	•			•					
						٠	•	•	•	•	•	•	•	•	•	•

SOD LEVELS

CSE group > Vit C group

- The CSE components are more complete than Vit C.
- Brazilin, minerals (SOD enzyme co-factor), Vitamins

CSE group > negative group

- CSE donates H atoms
- CSE binds ROS-forming metals
- CSE inhibits enzymes that form ROS
- CSE increases endogenous antioxidant gene expression through NRF2 activation

SOD LEVEL

No proven dose-response relationship due to:

Cytotoxic effects Reducing the work of intracellular antioxidant glutathione (GSH) Gradual pharmacological response

MDA LEVEL

- \rightarrow All doses of CSE and vit C were almost equally effective during the 28 days of intervention. \rightarrow Measurement of MDA levels is not at the location of contact between formaldehyde and the body.
- \rightarrow inhaled formaldehyde damages cell membranes.

CSE group > Vit C group:

Vit C binds lipid hydroperoxides at the termination stage

 \rightarrow Vit C is better at suppressing peroxidation (MDA fat formation)

CSE group < negative group:

- The negative group does not receive exogenous antioxidants \rightarrow oxidative stress.
- CSE scavenges free radicals and increases SOD synthesis
- CSE reduces the formation of nitric oxide (a trigger for inflammation and fat peroxidation)

MDA LEVEL

Propagation Stage : R-CH + $O_2 \rightarrow ROO$

 $ROO + CH \rightarrow ROOH + C$ $ROO + CH \rightarrow LOOH + C$

There is a significant relationship between SOD levels and MDA levels (p=0.02 and r= -0.422)

- → SOD is used to fight oxidative damage due to exposure to formaldehyde gas so that the amount of MDA decreases.
- \rightarrow The higher the SOD level, the lower the MDA level.

CASPASE 3 LEVEL

CSE 1000 group = Vit C group

- CSE prevents oxidative stress, prevents chromosome damage, activates P53, arrests incorrect cell cycle, and activates caspase 9.
- Vitamin C prevents oxidative stress.
- → the same ability because both work directly at the stage of preventing oxidative stress.

CSE group 1000 < negative group

 CSE scavenge free radicals, so there is no disruption to mitochondria as the main target of formaldehyde.

26

EKS group <normal group:

- CSE is able to scavenge free radicals → and reduce oxidative stress.
- Normal mice undergo physiological phenomena to maintain cell safety.

Caspase 3 Level

Descriptively: The higher the dose of sappanwood extract, the lower the level of caspase 3.

Nasal Epithelial Damage

CSE 1000 group = Vit C group

- → CSE performance has
 been done by inhibiting
 the production of NO
 which causes
 inflammation
- → Vitamin C does not work to prevent inflammation but suppresses cell proliferation.

CSE group 1000 < negative group

- CSE inhibits free radical oxidation reactions I cell damage can be inhibited
- The negative group did not receive antioxidant defense.

CSE group =normal group:

- CSE is able to scavenge free radicals, thereby suppressing cell damage, comparable to mice that did not receive free radicals.

Nasal Epithelial Damage

Descriptively:

The dose response relationship of giving sappanwood extract to nasal epithelial cell damage has emerged, but the difference is not significant.

From the results of this study, it is proven that CSE can prevent cell damage through increasing endogenous antioxidants and preventing lipid peroxidation in experimental animals.

Thus, natural materials such as CSE can be used as candidates for preventing diseases caused by exposure to toxic materials

THANK YOU

32

.