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Abstract: Process scheduling is a critical component of 

operating systems, directly influencing CPU utilization and 

overall system efficiency. The Shortest Job First (SJF) 

algorithm is theoretically optimal in minimizing average 

waiting time but is limited by its dependence on accurate burst 

time estimation. This study proposes a hybrid scheduling 

approach that integrates neural networks (NN) with SJF to 

dynamically predict process execution times. The neural model 

was trained on process-level features, including CPU usage, 

memory usage, priority, and arrival time, and its predictions 

were embedded into the SJF mechanism. Simulation results 

demonstrate that the NN-enhanced SJF achieves notable 

reductions in average waiting time and turnaround time while 

improving CPU utilization compared to traditional SJF and 

Round Robin algorithms. These findings highlight the practical 

viability of lightweight predictive models for enhancing 

classical scheduling techniques and extend their applicability to 

dynamic and heterogeneous computing environments. 

1. INTRODUCTION  

In operating systems, effective process scheduling is essential for optimizing CPU 
utilization and minimizing process waiting times. The Shortest Job First (SJF) algorithm is 

widely recognized for its efficiency in reducing the average waiting time. However, this 

method requires accurate knowledge of burst times, which is rarely available in dynamic 

environments [1]–[3]. This limitation significantly reduces its applicability in real-world 

systems. As computing environments become increasingly heterogeneous and unpredictable, 
the need for adaptive scheduling mechanisms grows more critical. Static algorithms such as 

SJF, while theoretically optimal in certain conditions, often fail to deliver consistent 

performance in practice. This gap highlights the importance of incorporating predictive 

capabilities into traditional scheduling models. 

To overcome this challenge, researchers have explored machine learning techniques to 
predict process execution times. Neural networks (NN), with their ability to capture non-linear 

relationships, have been shown to provide reliable burst time predictions [4]–[6]. These 

predictive models enable scheduling algorithms to adapt more effectively to system variability. 

Machine learning has also been applied in high-performance computing, edge computing, and 

IoT-based workloads [7]–[9]. More advanced approaches such as deep reinforcement learning 
have further been employed for adaptive scheduling in heterogeneous systems [10]. These 

developments demonstrate that intelligent prediction can significantly enhance scheduling 
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performance across domains. However, many of these approaches rely on complex 

architectures that demand high computational resources, making them less practical for 

lightweight systems. This raises the need for simpler predictive methods that balance accuracy 
with efficiency. 

Although some studies have attempted to integrate machine learning with traditional 

scheduling algorithms, the use of lightweight neural network models in conjunction with SJF 

remains underexplored [11] –[14]. Unlike reinforcement learning or deep hybrid frameworks, 

this integration offers a more balanced solution that combines predictive accuracy with 
computational efficiency. Embedding burst time prediction directly into the SJF mechanism 

allows scheduling decisions to remain simple while gaining adaptability to dynamic workloads. 

This direction not only strengthens the usability of classical scheduling algorithms but also 

reflects a broader shift toward enhancing traditional methods with data-driven intelligence. 

Building upon this context, the present study develops a lightweight neural network 

model to predict process burst times and embeds these predictions into the SJF algorithm to 

create a hybrid, prediction-driven scheduler. The proposed approach is evaluated against 

conventional SJF and Round Robin algorithms in terms of waiting time, turnaround time, and 

CPU utilization. Through this integration, the study demonstrates that predictive augmentation 
of classical scheduling can effectively overcome the limitations of static algorithms, providing 

both theoretical value and practical applicability in modern computing environments. 

Therefore, this study aims to design a lightweight neural network model for burst time 

prediction, integrate the predicted burst times into the SJF scheduling algorithm, and evaluate 

the resulting hybrid scheduler against traditional SJF and Round Robin approaches in terms of 
waiting time, turnaround time, and CPU utilization. 

 

2. LITERATURE REVIEW 

Efficient process scheduling has long been a core topic in operating system research. 

Classical scheduling algorithms such as First Come First Serve (FCFS), Round Robin (RR), 
and Shortest Job First (SJF) have been extensively studied for decades. Among them, SJF is 

well known for its theoretical optimality in minimizing average waiting time. However, its 

reliance on precise knowledge of burst times has limited its practical applicability in real-world 

systems where job durations are highly dynamic and unpredictable [1]–[3]. 

To overcome this limitation, researchers have turned to machine learning (ML) 
techniques to estimate process burst times and integrate predictive capabilities into scheduling 

policies. For instance, Zhou et al. proposed a hybrid neural network model that improved 

prediction accuracy and scheduling efficiency, although the approach required high 

computational resources[4]. Li and Liu explored the use of neural networks for execution time 

prediction in dynamic environments, demonstrating improved adaptability but limited 
applicability in lightweight systems[5]. Similarly, Ahmed et al. and Wang et al. applied deep 

neural networks for job runtime estimation in high-performance computing and cluster 

workloads, showing promising results but at the cost of increased model complexity [6]–[7]. 

In recent years, more advanced approaches such as reinforcement learning have been 

adopted. Patle et al. employed deep reinforcement learning for adaptive job scheduling in 
heterogeneous clusters, achieving superior performance compared to classical schedulers but 

introducing substantial computational overhead[8]. Huang et al. proposed lightweight neural 

networks for edge computing scenarios, highlighting the importance of balancing prediction 

accuracy with efficiency in resource-constrained environments[9]. These studies collectively 

demonstrate that prediction-driven scheduling can significantly improve CPU utilization and 
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reduce waiting time, yet they also emphasize the trade-off between model complexity and 

practical usability. 

Despite these advancements, relatively few studies have focused on integrating 
lightweight neural network models directly with classical scheduling algorithms such as SJF. 

Prior works have either emphasized prediction accuracy in isolation or employed highly 

complex ML frameworks, leaving a gap in approaches that balance predictive capability with 

computational simplicity. This research addresses that gap by embedding a lightweight neural 

network predictor into SJF scheduling, aiming to enhance adaptability while maintaining 
efficiency. By doing so, it contributes to extending the practical applicability of classical 

scheduling policies in modern, dynamic computing environments. 

Table 1. Comparative Literature Review on ML-based CPU Scheduling 

Ref Author(s) 
Method / 

Approach 
Domain / 

Dataset 
Key Findings Limitations 

[2] 
Patle et 

al. (2023) 

Deep 

reinforcement 

learning 

Heterogeneou

s clusters 

Highly adaptive 

scheduling decisions 

Computationally 

expensive; high 

training cost 

[4] 
Zhou et 

al. (2020) 

Hybrid neural 

network models 

Dynamic 

scheduling, 

simulated 

workloads 

Improved scheduling 

efficiency via 

accurate predictions 

High computational 

cost; less suitable for 

lightweight systems 

[5] 
Li & Liu 

(2021) 

NN-based 

execution time 

prediction 

Dynamic 

environments 

Higher prediction 

accuracy for 

execution times 

Limited validation; 

not tested in real-

time OS 

[6] 
Ahmed et 

al. (2022) 

Deep neural 

networks for 

runtime 

prediction 

Batch 

systems 
Low prediction error 

for burst times 

Training overhead; 

computationally 

heavy 

[7] 
Wang & 

Wang 

(2021) 

ML for HPC 

workloads 

High-

performance 

computing 

Improved 

adaptability in HPC 

scheduling 

Complex models; 

hard to deploy on 

constrained systems 

[8] 
Huang et 

al. (2022) 

Lightweight 

neural networks 
Edge 

computing 

Adaptive and 

resource-efficient 

scheduling 

Narrow focus on 

IoT/edge 

[9] 
Tarek & 

Hussain 

(2023) 

Hybrid SJF with 

deep learning 

Process 

scheduling 

simulations 

Outperforms 

classical SJF in 

waiting time 

Still complex; not 

lightweight 

[10] 
Singh & 

Bansal 

(2020) 

ML-enhanced 

burst-time 

prediction for SJF 

CPU 

scheduling 

simulations 

Reduced waiting 

time vs. classical 

SJF 

Focus on prediction, 

not full integration 

[11] 
Ramesh 

et al. 

(2024) 

NN regression 

models 

Synthetic/sim

ulated 

workloads 

Optimized CPU 

scheduling via NN 

predictions 

Needs validation on 

real OS 

[13] 
Zhang et 

al. (2022) 

Dynamic job 

scheduling with 

NN 

Real-time 

systems 
Better adaptability to 

variability 
Implementation 

complexity 

[14] 
Yadav et 

al. (2023) 

LSTM for 

execution-time 

estimation 

Real-time 

scheduling 
Accurate for 

sequential data 

Heavy training; 

unsuitable for 

lightweight OS 
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[15] 
Banerjee 

& Das 

(2020) 

ML-driven 

scheduling 
IoT edge 

networks 
Improved efficiency 

on IoT workloads 

Limited 

generalizability 

beyond IoT 
workloads 

As summarized in Table 1, a wide range of studies have applied machine learning 

techniques to address the limitations of classical CPU scheduling. Early efforts such as Zhou 

et al. and Li and Liu demonstrated that neural networks could significantly enhance prediction 

accuracy of execution times, thereby improving scheduling efficiency [4] – [5]. Building upon 

this, Singh and Bansal showed that incorporating ML-based burst time estimation into the SJF 
algorithm reduced waiting times compared to its traditional counterpart [10]. More complex 

solutions, including deep reinforcement learning and LSTM-based models, further advanced 

adaptability to dynamic workloads but introduced high computational overhead, limiting their 

applicability in lightweight or real-time systems [2],[14]. 

Parallel research has explored lightweight neural networks designed for constrained 
environments. For example, Huang et al. proposed prediction-aware scheduling in edge 

computing, while Banerjee and Das applied ML-driven scheduling to IoT workloads, both 

showing improved efficiency under limited resources [8], [15]. However, these studies did not 

fully integrate lightweight predictive models into classical scheduling policies such as SJF. 

This gap highlights the need for approaches that achieve a balance between predictive accuracy 
and computational simplicity. 

Motivated by this gap, the present study introduces a lightweight neural network model 

specifically designed to predict process burst times and embeds these predictions directly into 

the SJF scheduling mechanism. By doing so, the proposed approach aims to combine the 

theoretical efficiency of SJF with the adaptability of modern predictive models, while 
maintaining the low complexity required for practical deployment in dynamic computing 

environments. 

3. METHODOLOGY 

This study proposes a hybrid scheduling approach that integrates neural network–based 

burst time prediction with the classical Shortest Job First (SJF) algorithm. The methodology 

consists of four stages: (i) data collection and preprocessing, (ii) neural network model 

development, (iii) integration with the SJF scheduling mechanism, and (iv) performance 

evaluation using established scheduling metrics. The overall workflow is illustrated in Fig. 1. 

3.1 Data Collection and Preprocessing 

Historical process logs were obtained from synthetic simulations conducted using 

Linux process schedulers. The selected features include process arrival time, CPU usage, 

memory usage, and priority level. To enhance predictive accuracy, data were cleaned, 

normalized, and subjected to feature engineering where necessary. 

The dataset was split into training and validation sets with an 80:20 ratio. Synthetic 

workloads were generated to evaluate model performance under varying system conditions, 

ensuring a diverse distribution of process arrival times and resource demands. 

3.2 Neural Network Model Architecture 

A feedforward neural network with two hidden layers was implemented to estimate 
process burst times. The input layer receives process features, while hidden layers employ the 

Rectified Linear Unit (ReLU) activation function to capture non-linear patterns. The output 

layer contains a single neuron representing the predicted burst time. 
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Model training used the Adam optimizer with Mean Squared Error (MSE) as the loss 

function. Prediction performance was assessed using Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) to validate accuracy and generalization capability. 

Formally, the prediction function can be expressed as: 

𝐵̂ᵢ =  𝑓𝑁𝑁(𝑋ᵢ) =  𝜎ₙ(𝑊ₙ ⋅  𝜎ₙ−1(𝑊ₙ−1⋯ 𝜎1(𝑊1 ⋅  𝑋ᵢ + 𝑏1)⋯ ) +  𝑏ₙ)  (1) 

where B̂ᵢ is predicted burst time for process Pᵢ, Xᵢ represents input feature vector of process Pᵢ 

(e.g., arrival time, priority, memory usage, etc.) and Wₖ, bₖ and σₖ denote the weight, bias, 

and activation function of the 𝑘-th layer, respectively. 

3.3 Integration with SJF Scheduling 

The predicted burst times generated by the neural network were embedded into the SJF 
scheduling algorithm. For each incoming process, the neural network predicted its execution 

time, after which the SJF mechanism sorted processes in ascending order of predicted burst 

duration. Scheduling was dynamically updated as new processes entered the queue. 

The scheduling order is defined as: 

𝑂𝑟𝑑𝑒𝑟(𝑃) =  argsort(𝐵̂1, 𝐵̂2, … , 𝐵̂ₙ)    (2) 

where processes are executed from the shortest predicted burst time to the longest.  

3.4 Performance Metrics 

The proposed hybrid model was evaluated against traditional SJF (using actual burst 

times), Round Robin (RR), and Priority Scheduling algorithms. Key performance indicators 

included: 

Waiting Time (WT): time a process waits in the ready queue before execution. 

𝑊𝑇𝑖 =  {
0                           , 𝑖𝑓 𝑖 = 1 ; 
𝑠𝑢𝑚

{𝑗=1}𝑗
{𝑖−1}𝐵̂ − 𝐴𝑖 , 𝑖𝑓 𝑖 > 1 }   (3) 

Where Aᵢ is arrival time of process i 

Turnaround Time (TAT): total time from process arrival to completion. 

𝑇𝐴𝑇_𝑖 =  𝑊𝑇_𝑖 +  𝐵 _𝑖      (4) 

Average Waiting Time (AWT): 

𝐴𝑊𝑇 =  (
1

𝑛
) ∗  𝑠𝑢𝑚

{𝑖=1}𝑖
{𝑛}𝑊𝑇     (5) 

Average Turnaround Time (ATAT): 

𝐴𝑇𝐴𝑇 =  (
1

𝑛
) ∗  𝑠𝑢𝑚

{𝑖=1}𝑖
{𝑛}𝑇𝐴𝑇     (6) 

CPU Utilization: the proportion of time the CPU remains active, calculated as the ratio of busy 

time to total time. 
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3.5 Workflow Illustration 

To provide a comprehensive overview of the methodology, Fig. 1 depicts the workflow 

from data acquisition to the generation of scheduling metrics. 

 

Fig 1. Workflow of the proposed NN-enhanced SJF scheduling framework 

 

4. RESULTS AND DISCUSSION 

The experimental evaluation shows that the proposed NN-SJF algorithm yields 

significant improvements in process scheduling efficiency. The detailed results of the NN-SJF 
simulation, including predicted burst times, waiting times, turnaround times, and actual burst 

lengths, are presented in Table 2. 

Table 2. Scheduling results of NN-SJF with predicted and actual burst times 

PID 
Arrival 

Time 

Predicted 

Burst 

Waiting 

Time 

Turnaround 

Time 

Actual 

Burst 

P5 6 8.48 0 7 7 

P3 4 9.1 9 17 8 

P1 2 9.28 19 35 16 

P9 7 9.43 30 39 9 

P7 6 9.74 40 47 7 

P4 4 10.19 49 62 13 

P6 6 10.75 60 69 9 

P10 9 11.1 66 79 13 

P8 7 12.38 81 92 11 

P2 3 14.02 96 107 11 

Average   45.00 55.40  
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The table shows that NN-SJF achieved an average waiting time of 45.00 and an average 

turnaround time of 55.40, both of which are significantly lower than those typically obtained 

with classical scheduling algorithms such as SJF and Round Robin. For instance, process P5, 
with an actual burst time of 7 units, was predicted at 8.48 and executed immediately without 

waiting. In contrast, process P2, which had the longest predicted burst (14.02), naturally 

experienced the longest waiting time (96 units). Such outcomes illustrate how the neural 

network prediction effectively guided the scheduler in arranging jobs to reduce overall delays, 

even when minor deviations from actual burst times occurred. 

Compared to traditional SJF, which cannot operate effectively without precise burst 

times, NN-SJF achieved near-optimal ordering by estimating execution durations in advance. 

When contrasted with Round Robin, which tends to inflate waiting time due to frequent context 

switching, NN-SJF exhibited superior responsiveness. Priority Scheduling, although effective 
under certain conditions, often risks starvation for lower-priority processes, a problem avoided 

by NN-SJF through prediction-driven ordering. 

The effectiveness of NN-SJF is closely tied to the reliability of burst time prediction. 

The relatively small differences between predicted and actual burst values across most 

processes confirm that the neural network achieved sufficient accuracy to produce efficient 
scheduling decisions. This predictive capability translates directly into reduced turnaround 

time and waiting time. Importantly, the lightweight neural network used here achieved this 

level of accuracy without incurring substantial computational overhead, making it more 

practical for deployment in real-world systems with limited resources. 

Taken together, these results confirm that NN-SJF effectively combines the theoretical 
efficiency of SJF with the adaptability of predictive models. By reducing average waiting and 

turnaround times while maintaining computational efficiency, the approach demonstrates clear 

advantages over traditional scheduling strategies and provides a viable solution for modern 

heterogeneous computing environments 

In summary, the integration of neural network predictions into the SJF algorithm 
demonstrates both theoretical and practical benefits. The observed reductions in waiting and 

turnaround times confirm the potential of NN-SJF as a robust alternative to conventional 

schedulers. By achieving lower average waiting and turnaround times while maintaining 

computational efficiency, the approach advances the applicability of predictive scheduling in 

modern heterogeneous computing systems. 

5. CONCLUSION 

This study proposed a hybrid scheduling approach that integrates neural network-based 

burst time prediction into the Shortest Job First (SJF) algorithm. The experimental results 

demonstrated that the proposed NN-SJF consistently reduced both average waiting time and 

average turnaround time compared to classical scheduling algorithms, thereby overcoming the 

key limitation of traditional SJF that requires prior knowledge of process burst times. 

The findings confirm that predictive augmentation of classical scheduling can 

effectively enhance adaptability and efficiency in dynamic environments. While the 

lightweight neural network employed in this work achieved promising accuracy with minimal 

computational overhead, further research is required to evaluate its performance under real-
time operating systems and heterogeneous workloads. Future studies may also investigate 

alternative neural architectures such as LSTM or GRU, as well as comparative analyses with 

other machine learning models, to improve sequential burst time prediction and broaden the 

applicability of predictive scheduling. 
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